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by 
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1.    Introduction   .    A significant problem in the collapse of a spherical 

cavity in an infinite homogeneous liquid is the behavior of a distortion 

from complete spherical symmetry.    The information presently available 

is based on a linearized perturbation analysis.    When the analysis is made 

under the assumption of axial symmetry,  the boundary of the cavity 

r   ,    may be written as 

oo 

r   (ö,t) = R{t) + >   a  (t)P  (cos0) 
s LJ    

n        n 

nr.2 

(1) 

where   P  (cosö)   is the Legendre polynomial of degree   n.    In the perturba- n 
tion theory it is supposed that 

a  (t)|  «R(t)     , (2) 

and the linearization uncouples the coefficients   a  (t)   and gives a mean 

radius   R(t)   which develops in time independently of the distortion [ l] . 

The solution to the general linearized equation for   a  (t)   was found by 

Plesset and Mitchell [ 2j for a bubble expanding or collapsing under a 

constant ambient pressure.    This solution is expressed in terms of the 

hypergeometric function.    It was found for a collapsing cavity that,   as the 

mean radius approaches zero,    a  (t)   grows in magnitude like   R 4    and 

oscillates with increasing frequency.    Even a small initial asymmetry 

will,  therefore,  become large for a sufficiently reduced cavity. 

By use of the theory of Plesset and Mitchell,  Naude and Ellis [ 3] 

analyzed their experimental observations of nearly hemispher    al bubbles 

collapsing on a plane,   solid wall.    They observed that the distortions in 

the bubble shapes were primarily composed of the second harmonic with 
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a small contribution from the fourth harmonic.    No odd h.irmonicH should 

be present,  of course,  because of the plane of symmetry,    Naucic and 

Ellis presented measured values for   a (t)   and   a (t)   over the first half 
2 4 

of the collapse   (1. 0 > R(t)> 0.5)   and they observed that the values for 

a (t)   agreed with the predictions of the linearized perturbation solution. 
2 

Since the contribution of the second harmonic was fairly large, Naude and 

Ellis found it necessary to determine the second order effect of a (t) be- 

fore close agreement on the theoretical predictions for   a (t)   could be 
4 

obtained. 

An efficient numerical method has been developed to simulate the 

collapse of an initially spherical cavity near a solid wall [4],  and this 

method is readily adapted to the simulation of the collapse in an infinite 

liquid of a nonspherical cavity with axial symmetry. 

2.    The Numerical Procedure.   It is assumed that the flow is nonviscous 

and irrotational so that it may be described by a potential.   It is assumed 

further that the effects of compressibility may be neglected.    The col- 

lapse is driven by the difference between the ambient pressure,    p   ,   and 

the pressure in the cavity,    p   .    This pressure difference   Ap = p    - p 

will be taken to be constant.    When   Ap   is sufficiently large,   surface 

tension may be neglected.    Under these conditions the collapse of a cavity 

with a given initial shape with the mean initial radius   R     may be scaled 

to geometrically similar cavities.    Velocities will scale with the factor 

(Ap/p)2    where   p   is the liquid density. 

The calculations are based on a series of small time steps.    Be- 

fore each step the potential problem is solved and the velocity is calculated 

at a large number of points representing the free surface of the cavity. 

If the time step   At   is sufficiently small,  the velocities will remain 

relatively constant.    The displacement of a free surface point with velocity 

v   at the beginning of the time step is approximated by 

Ax   = vAt (3) 

The change in the potential of the point at the free surface can be found 

from Bernoulli's equation 
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The rate of change of the potential of a point moving on the free surface 

is 

S^lf + v2      , (5) Dt   = W 

or 

^=AP/p+^v2     . (6) 

which gives the approximation 

Aip sJAp/p + j v2]At     . (7) 

When the bubble starts from rest,  the initial time step is treated differ- 

ently.    During the initial time step, the velocities are small compared 

with   (Ap/p)2,    The displacements of the free surface points are small, 

and the potentials and velocities are nearly linear with time.    There- 

fore the potential problem is solved for the initial time step with a uniform 

potential of   Ap/p   over the initial cavity surface and the resulting velocity 

V is calculated at the free surface points.    Then the velocity during the 

initial time step is 

v=tV     . (8) 

For the initial time step the displacement and potential of a point on the 

free surface is approximated by 

Ax  =: 1 (At   )2 V    , (9) 

and 

^ =AtoJAp/p + 1 (AtoV)2) . (10) 

 . . .A np-por improvement in the method is to use the knowledge that 

the increase in velocity is nearly linear during the early stage of collapse 

to improve the accuracy for time steps throughout the early collapse 



instead of only for the initial time step.    The following approximation is 

used 

Ax =.-  Y v[(t+At)2 -f2Jt"1      , (11) 

and 

1    .Jr/^.A.vi     .3 1.-2 A^ = (Ap/p)At + ^ ^[(t+At)3-t3 Jt . (12) 

3.    Results of the Calculations 

Two cases of initially nonspherical bubbles collapsing in a homo- 

geneous liquid were simulated.    For the first of these (Case A) the initial 

bubble shape, described by its radius, 

rs(0.0)= 1 + ^ P2(coS0)    , (13) 

was roughly that of a prolate ellipsoid.    The other case (Case B) had an 

oblate initial shape with a radius of 

rs(0.O) = 1-177  P(cosö)     . (14) 

The liquid was assumed to oe initially at rest in both cases.    A total of 

seventy-six time steps were used for Case A and eighty-six for Case B. 

Bubble shapes for selected time steps from Cases A and B are 

shown superimposed ir Figs.  I and 2,  respectively.    Table I lists the 

time from the initiation of collapse for all of these shapes.    The velocity 

of the bubble surface on the plane of symmetry and on the axis of 

metry is also listed for each shape.    The times are given in units of 

R (p/Ap)2 .    The velocities are given in meters/sec for 

Ap        10 dynes/cm2        1 atm 

1 . Og/cm 
-3 ./ °r      r      . (15) 

P 7   On/mi density of water 

Since it is of interest to compare the results of numerical simula- 

tion with the linear theory,  a least squares fit was used for each cavity 

shape to determine the best values for the mean radius and the coefficients 
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in the expansion 

5 

r  (0,t) = R(t) + )    a    (t)P   (cosO)     . (16) 
s /_/     zn       zn 

This fit was successful except for the last few time steps,  when the bub- 

ble was highly distorted.    Figures 3 and 4 show   a (t), a (t),    and   a (t) 
2 4 6 

as function of R(t).     For comparison   a (t)   computed from the linear theory 

of Plesset and Mitchell is also included. 

In Case A, the initial elongation of the bubble along its axis causes 

the velocity on the bubble surface to be greatest at the poles early in the 

collapse.    This deformation eventually causes the formation of jets on the 

axis of symmetry,  which have a velocit,r of about 100 m/sec under the 

conditions of Eq.   (15) when they strike.    Similarly,  the velocity on the 

bubble surface is a maximum at the plane of symmetry in Case B,  and 

the bubble assumes a "dumbbell" shape.    As the center of the bubble in 

Case B constricts about the axis,  the radial velocity near the plane of 

symmetry grows without limit.    This unbounded rise in radial velocity is 

a result of the assumption of axial symmetry; a small initial distortion 

lacking axial symmetry would prevent it. 

According to the linearized theory,    a (t)/a (0)   should follow the 

same curve for both Case A and Case B,    and all o her coefficients should 

remain zero throughout the collapse.    The nonlinear   solution during the 

first part of collapse conforms more closely to linear theory than might 

be expected for an initial distortion of ten percent.    During the final part 

of the collapse,   the nonspherical terms in the bubble shape and velocity 

grow to the order of magnitude of the spherical terms,  causing the higher 

harmonics to be excited.    The behavior of   a (t)   closely follows the second 
4 

order results of Naude and Ellis (not shown here).    Throughout the col- 

lapses   a (t)   remains surprisingly close to the linear estimate.    The 

theory of Plesset and Mitchell predicts that   a (t)   will oscillate with in- 

creasing frequency as the mean radius approaches zero.    The distortion 

in both cases is large enough,  however,   so that parts of the bubble strike 

each other before an entire oscillation can be completed. 
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5.    Adjustment for Finite Time Steps 

The chief source of error in these calculations is the use of finite 

time steps.    A close estimate of this error can bo made by computinj» 

the effect of the same time steps used in Cases A and B on bubbles satisfy 

ing the linearized equations. 

In the linearized approximation to Cases A and B, the second 

harmonic is the only nonspherical term in the radius of the free 

boundary; 

r  (0,t) = R(t) + a(t)P(cos0)       . (17) 
ö 2 

It is assumed,   of course,  that    |a(t)|  « R(t).    Also,   to first order the 

potential on the free surface can be written as 

?[r  {o,t),0,t]  = A(t) + C(t)P (cos0) 
o 2 

(18) 

By an analysis similar to that of Reference [ 1]  it is found that,  in the 

linearized approximation. 

• 
R   r.    - 

A 
R     ' 

• 
a = - 30    .   Aa\ 

i   R       R'l 
A=^ 

P          2  Rz 

and 
•  _  A   3C    ,   Aa c = RI'R 

+^r 

(19) 

(20) 

(21) 

(22) 

Thus the linearized equivalent of Eq.   (3) is 

AR = -  ^ At     ;        Aa . -IB   +  £* 
R 1  R        R2 At     ; (22) 

and the linearized equivalent of Eq.  (7) is 



ac = E 
3C    .   Aa 

R i —] At     . (24) 
R2 / 

Linearized equivalents of Eqs.   (9),   (10),  (11),   and (12) arc obviuus. 

The time stops used in Cases A and B were applied to tlicsc; 

linearized equations to obtain an adjusted linearized solution.    The differ- 

ence between this adjusted linearized solution and the true linearized 

solution represents the error caused by the use of finite time steps.    The 

adjusted linearized solution is shown with the true linearized solution and 

the second harmonic determined from the nonlinear   solution in Fig.   5 

for Case A and in Fig.   6 for Case B.    It is seen that the second harmonic 

from the nonlinear   solution is even closer to linear theory when the effect 

of finite time steps is taken into account. 

The major nonlinear effect ii? the excitation of the higher harmonics, 

This nonlinear effect has an important influence on the jet in Case A as 

can be illustrated by a calculation using linearized theory for the speed on 

the axis of symmetry when the opposite jets strike.    The result is about 

193 m/s using the exact linearized solution and about 189 m/s using the 

linearized solution adjusted for the finite time steps used in Case A.    The 

difference between these two values gives a measure of the error caused 

by the finite time steps.    Both values are almost twice the observed jet 

speed in the nonlinear calculation.    This difference reflects the large 

contributions from the higher order harmonics in the final stages of col- 

lapse. 
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Fig.   3    Coefficients in Expansion of Bubble Radius for Case A, 
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Fig. 4      Coefficients in Expansion of Bubble Radius for Case B. 
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Fig. 5 Adjusted Linearized Solution Based on Finite Time 
Steps Used in Case A. 



Fig. 6     Adjusted Linearized Solution Based on Finite Time 
Steps Used in Case B 
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